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Abstract 

This paper is for assessing the image quality (IQ) without using an authentic 

image (original image) which is a type of Blind IQ Assessment (BIQA) 

model by introducing a technique of Convolutional Neural Network (CNN). 

The distortions of edges in the image are considered as features to represent 

the image feature vector. This approach is justified by the evidence that the 

subjective evaluation concentrates on image characteristics that radiate from 

the boundaries and edges that exist with in the image. It was identified in the 

prior methods that the features are extracted at the time of training or before 

training by applying sophisticated transformations on the image. In this 

work, the vertical along with horizontal edge feature maps of the training 

images are extracted by means of Scharr Kernel (SK) approach. These edge 

maps subsequently fed into a CNN, which uses non-linear transformations 

to bring out higher-level features. Regression is then used to link the 

generated features to the IQ score. To accommodate different sizes of input 

images, the SPP (Spatial Pyramid Pooling) layer is used in this network. The 

developed model was evaluated using well-known datasets in the field of 

IQA. The suggested model's performance reveals that it outperforms 

previously existing models in context of negligible complexity involvement 

and feature extraction simplicity. 

 

Keywords: edge distortion, feature extraction, image quality assessment. 

 

 

1. INTRODUCTION 

A picture is equal to thousand words, is a popularly known fact. Image sharing and communication 

is an important component of modern life, particularly in the context of social network platforms. It's 

also a fact that low-bandwidth image capture, processing, and transmission are prone to a variety of 

distortions. The approximation of IQ is critical in the progression of numerous applications of image 

processing (IP). Because human picture quality judgment cannot be used everywhere, automatic IQ 

estimate become a well-known study topic in IP as well as computer vision (CV) [1]. Spontaneous 

assessment of IQ for distorted images (DI) can be labelled into several categories of Image Quality 

Assessment (IQA) techniques, relative on the evidence available about the authentic image. These 

include BIQA, also known as No-Reference IQA (NR-IQA), Reduced-Reference IQA (RR-IQA), 

and Full Reference IQA (FR-IQA). The advancement of CNN resulted in a new BIQA methodology. 

A CNN is developed for estimating the IQ in BIQA and is trained with a subset of DI and their 

accompanying scores of IQ. The scores of IQ are usually the DMOS (Difference Mean Opinion 

Scores), which are derived from human assessment of IQ such as bad, poor or good on distorted 

images. 
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2. LITERATURE REVIEW 

To assess IQ, the models of FR-IQA require the authentic image [2-7]. For describing the quality of 

its deformed counterpart, the models of RR-IQA need access of partial information from the authentic 

image [8-11]. To measure the quality of altered version of an image, BIQA models require no 

evidence about the authentic image. These models are broadly categorized into three types such as 

Conventional models, Machine Learning (ML) models and CNN premised Deep Learning (CNNDL) 

models. Conventional models depend on demographics of native scene. ML models train the models 

by considering features of authentic in addition distorted forms of image and hand-crafted features. 

With the assistance of previous layers of a convolutional network, CNNDL models are capable to 

abstract representational features from an image and link these features a head of fully connected 

layers with quality scores in the time of training. 

Mittal et al [12] proposed a BRISQUE model for assessing the special quality of blind image. This 

model measures the spontaneity costs that exist in the authentic and altered image’s which supports 

locally normalized coefficients of luminance as quality of an image. The forecast model obtained 

better enhancements than the popular paradigms. Moorthy and Bovik [13] established the BIQA 

model as a two-stage outline for clustering transformation function in Intra together with Inter sub-

bands of orientation and variable scale by characterizing them with a Stochastic Scale Binary mixture 

model. Liu et al [14] suggested a model created on curvelets to direct the log-histograms maxima of 

the curvelet quantity values and to bring out the scales from strength distribution of both orientation 

and scale exists in the curvelet field. Among a variety of non-natural categories, the generated features 

out-of the curvelet filed are particularly suited to quality of real image. For linear categorization of 

IQ using human subjective assessments, a SVM (Support Vector Machine) classifier is used. Saad et 

al [15] created a model of NR-IQA to extract features originating from the image discrete cosine 

transform measurements based genuine scene statistics paradigm. To forecast quality scores of 

images, the obtained features are applied in the experiment of a simple Bayesian inference approach. 

Yi Hua et al [16] proposed an oriented gradients IQ evaluation model that uses a back propagation 

neural network with Ada boosting to link the retrieved image features of relative gradient magnitude 

of IQ. The experiment's predicted accuracy outperforms the performance of well-known models. Ye 

P et al [17] developed a structure of a NR-IQA that follows unsupervised method to realize an image 

characteristics vocabulary by using raw image parts that are segregated from a subset of un-labeled 

images. To obtain features to reflect the estimation of IQ, the authors used a sensitive task encoding 

with max pooling. 

Xialei Liu et al [18] suggested a method of NR-IQA that uses Siamese Network (SN) and 

synthetically created datasets to learn images ranking. The trained SN exchanges the knowledge 

information with a CNN, which is then trained for fine tuning the transferred weights using a group 

of images that are drawn from subset of images. Throughout the testing phase, thirty sub-images of 

the deformed image are randomly sampled, and the IQ is calculated based on the median value of 

those scores. Le Kang et al [19] built a CNN that uses varying window sizes to identify features from 

image patches where pixel intensities are locally normalized. To associate the learnt features along 

with the IQ score, two fully connected (FC) layers are employed in aggregation with an output node. 

The expected patch scores are applied to quantify the intensity of IQ score by considering the given 

image. Bosse et al [20] presented an end-to-end CNN approach for evaluating the IQ. This network 

contains a variety of layers, ten convolutional, five pooling, and two FC layers for feature abstraction 
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as well as regression. The combined optimization of biased average patch growth was involved in the 

approach for local pooling patch potentials to global IQ. Bianco et al [21] experimented with a 

network architecture of Caffe with an extractor for features on top of which the retrieved features 

were mapped to subjective quality scores using a linear kernel SVR algorithm. According to Yezhou 

Li et al [22], the developed approach for calculation of IQ which is built on an architecture of ResNet 

[23] claims that the activation function of ReLU permits non-linear modifications for separating 

higher level image characteristics, resulting in more reliable IQ amount than linear filters. 

The developed work is planned in 5 sections. The inspiration to the work is presented in section 3 as 

background. The proposed technique is defined in section 4, which illustrates the input to the CNN 

and a CNN architecture is suggested for extracting features. The details of training, testing along with 

outcomes are presented in section 5. Section 6 mentions the conclusions of this work. 
 

3. BACKGROUND 

To extract the image feature maps for training, the large number of the approaches in the existing 

works used complex transformations at low level. The researchers are inspired with these 

observations to arrive a method for extracting image features at higher-level to determine the IQ [24]. 

The authors devised a method that identifies higher level image features to measure the IQ. The 

developed method identifies the vertical and horizontal edge feature maps of images from the training 

database and utilizes them to train a CNN to estimate IQ. The sub figures in Fig. 1 shows an input 

image (a), Gray Scale image (b) and its horizontal and vertical gradients (c) & (d) respectively, 

extracted using Scharr operators. 

 

  
(a). Image. (b). Gray Scale image. 

  
(c). Horizontal gradient. (d). Vertical gradient. 

Fig. 1. Feature Extraction. 



Mathematical Statistician and Engineering Applications 

ISSN: 2326-9865 

 

 

180 

 
Vol. 71 No. 2 (2022) 

http://philstat.org.ph 

 

 

4. PROPOSED APPROACH 

Let X is the DI in the dataset, and y be the corresponding DMOS of the DI that exist in the dataset. 

Normally, the y value varies from 0 to 100. A 0 value of y demonstrates that the image has not been 

distorted in any way and indicates that X is the authentic image. A rating of 100, on the other hand, 

implies that the image is fully distorted. However, the interpretations of the standards (0 to 1, 0 to 9) 

are differing from one dataset to the next. In the present work, we normalized the DMOS values into 

the range 0 to 1. Zero representing the highest quality. A CNN is trained in BIQA using (X, y) pairs 

that are present in the dataset. The image's representational feature maps are extracted by the first 

convolutional layers, which are then mapped to the IQ score y by the next FC layers. 

A network which is trained like this is used to calculate the quality of unseen DI image X'. When fed 

with a huge number of DI’s and authentic images, a CNN can successfully learn the representational 

image features. A significant issue in the field of estimating the IQ is the datasets are typically tiny, 

on average including less than few thousand images. The challenge is effectively solved in the current 

work by using the edge detector method of Scharr [25, 26] to acquire the vertical and horizontal edge 

maps in every image and feeding them to the artificial neural network. 

The modified input allows extraction of higher level features of image more quickly from a smaller 

dataset in terms of size by make use of the convolutional layers. Furthermore, the feature maps are 

divided into patches, which augment the input. Every feature edge map of image X is separated to 

words four patches, and the score y of image is ascertained to every feature map patch to complete 

the augmentation process. A major design consideration is how many patches a feature map should 

be divided into. Due to the large count of patches, feature linkages will be lost, resulting in 

contextually unconnected patches. If the number is too little, the objective of the enlargement may 

not be accomplished. During perception, humans usually concentrate as to four quadrants of an image. 

Therefore, in the current study, each feature edge map of image X has been divided into 4 patches 

and each feature map patch is assigned the score y. 

a. INPUT TO NETWORK 

The following steps are used to construct the network's input set from the authentic dataset. In the 

first step, the Scharr kernel is applied to transform the black-and-white version of every image into 

vertical edge feature map Xv and horizontal edge feature map Xh. The Scharr kernel is a gradient-

based kernel that learns the degree and direction of an image. Kernel Scharr does so by estimating 

the image's gradient intensity function. The kernels are: 

 

𝐺𝑥 = [
−3 −10 −3
0 0 0

+3 +10 +3
] and 𝐺𝑦 = [

−3 0 +3
−10 0 +10
−3 0 +3

] 

In the next step, edge feature maps are separated into four same-size portions that correspond to the 

four quadrants of the plane. To accomplish this, for every X image of size (w, h), generate eight edge 

feature maps of the same size (w/4, h/4). The score (DMOS) y image is used as a label for every 

patch. As a result, the training data size is improved by eight times. The construction of the dataset 

for the input to the CNN network is depicted in Fig. 2. The horizontal feature edge map of Fig. 1 (c) 

is sub-divided against four patches as given in sub figures (a) to (d) of Fig. 2. The same results of Fig. 

1 (d) are given in sub figures (e)-(h). 
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(a). Top-Left (b). Bottom-Left (c). Top-Right (d). Bottom-Right 

    

(e). Top-Left (f). Bottom-Left (g). Top-Right (h). Bottom-Right 

Fig. 2. Preparation of Dataset: Horizontal edge maps (a)-(d). Vertical edge maps (e)-(h). 

b. CNN NETWORK ARCHITECTURE 

Let w*h designate the image's width and height when it is sent to the CNN network. As illustrated in 

Fig. 3, the anticipated CNN consists of the subsequent convolutional as well as fully connected layers. 

The first convolutional layer comprises of 16 filters with a filter size of (3, 3) and ReLU (Rectified 

Linear Unit) activation function. The indicated layer with padding produces an output with 

dimensions (w * h * 16). The output is then passed through a layer of average pooling with (3, 3) 

window size whose output is (w/2 * h/2 * 16). The second convolutional layer comprises of 16 filters 

with a window size of (3, 3) and ReLU as activation function. This layer produces an output of 

dimensions of (w/2 * h/2 * 16). Another layer of average pooling with (3, 3) window size follows in 

the network, which results an output with (w/4 * h/4 * 16) dimensions. An (8, 8) block SPP [20] layer 

reduces the input as vector size of 1024. Finally, with sigmoid activation function, a single-unit 

regression layer is used. 

 
Fig. 3. Architecture of a Network 

The TensorFlow 2.0 python library is employed to prototype the developed model. The CNN network 

is trained by using Adam [27] as the optimizer and loss function as Mean Squared Error [28] (MSE) 

considering 50 epochs. TensorFlow [29] is dataflow architecture-based machine learning software 

library that is open-source and free. The experiments are carried out in Google's Colaboratory or in 

short “Colab”, which is a platform for doing open research. The GPU provided in the Colab helps to 
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increase the speed in the process of the larger datasets training along with testing, as an outcome, the 

accuracy is improved. MSE calculates the average squared difference connecting each image's true 

and expected DOMS scores in a subset of images from the dataset. 

𝑀𝑆𝐸 =  
1

𝑁
∑ (𝑦𝑖 − 𝑦�̂�)

2𝑁
𝑖=0  (1) 

The RMSProp and AdaGrad strengths are coupled in Adam Optimizer to provide a more stepped 

forward gradient descent. The amount of gradient succession is adjusted in such a way that there is 

minimum level of variation as soon as it spreads the global smallest even though captivating large 

adequate stages to prevent the premature convergence. 

 

5. EXPERIMENTS 

In this section, we present data used in training the model, testing the model and the results. In this 

work, the developed method is experimented with the two benchmark datasets TID2008 as well as 

LIVE-IQA. 

a. Datasets 

i. TID2008 (Tampered Image Dataset 2008) database [30]: The TID2008 database comprises 25 

authentic photos and 1700 distorted images divided into 17 distortion categories. In our tests, 

we considered the four prevalent distortions which are commonly present in the LIVE dataset, 

specifically JP2k, JPEG, WN, and BLUR. Each image does have a MOS (Mean Opinion Score) 

that varies from 0 to 9. Greater MOS, signifies higher quality. Fig. 6 demonstrates the authentic 

(a) and four variations of Gaussian Blur distorted forms (b-e) of the TID2008 dataset's "I09" 

image. 

ii. LIVE-IQA (Laboratory for Image and Video Engineering IQA) database [31]: LIVE-IQA is 

made up of 29 authentic images to which five varieties of distortions such as FastFading (FF), 

JPEG compression (JPEG), Gaussian Blur (GBLUR) and White Gaussian (WN) with 7-8 

degradation levels are added. The dataset contains 982 images, with 799 of them being distorted 

images. Fig. 6 illustrates the concept of DMOS, which is a value between 0 and 100 that is 

assigned to every image in LIVE-IQA, smaller DMOS specify higher IQ. The authentic (f) as 

well as five grads of GBlur alternate forms (g-k) of LIVE-IQA dataset the image 

“churchandcapitol” have been exhibited in Fig. 6. 

 

In the course of training as well as testing, the scores assigned to every image in the above stated 

datasets are normalized to a common scale of 0 to 1. For a impartial judgement of outcomes, the 

present work only looked at those distortions that are present in both datasets. To measure the 

performance of the anticipated model, two distinct experimental frameworks named as Independent 

Validation Framework (IVF) and Cross Validation Framework (CVF) were designed. 

b. Training, Testing and Results using IVF 

In IVF, the experiments were done by using each distortion separately and all the distortions 

combined to acquire performance measures for every dataset stated in the preceding section. The 

developed model used 80% of dataset during training and 20% during testing in each experiment. 

The images count that are employed in the TR (training) and TE (test) phases of each experiment for 

the couple of the datasets using the IVF method are given in Table 1. 
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Table 1. Count of test and train images in the IVF 
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TID2008 340 85 100 25 100 25 100 25 - - 100 25 

LIVE-

IQA 
768 196 182 45 140 34 187 46 140 34 140 34 

 

The sub-figures of Fig. 4 display the loss function plots throughout the training stage in all of the 

trials done in IVF for the TID2008 (a) dataset as well as the LIVE-IQA (b) dataset respectively. At 

the training stage of IVF, the loss function used is MSE as defined in equation (1). 

 

  

(a). Train and test with TID2008. (b). Train and test with LIVE IQA. 

Fig. 4. Loss function (MSE) plots in the training stage for IVF of dataset(s) TID2008 

and LIVE-IQA. 

Fig. 5 displays scatter graph of true and predicted scores of DMOS in the testing stage in the IVF of 

all images together along with individual distortions for the datasets of TID2008 (a)-(e) and LIVE-

IQA (f)-(k). The plots obviously exhibit that the model's assessments ability matches very well with 

subjective images quality assessments of DIs. It is also worth mentioning that the developed model 

is as efficient when all distortions are taken into consideration. 

    

(a). All distortions. (b). AGN. (c). BLUR. (d). JPEG. 



Mathematical Statistician and Engineering Applications 

ISSN: 2326-9865 

 

 

184 

 
Vol. 71 No. 2 (2022) 

http://philstat.org.ph 

 

 

    

(e). JP2K. (f). All distortions. (g). WN. (h). GBLUR. 

   

(i). JPEG. (j). JP2K. (k). FF. 

Fig. 5. The two-dimensional scatter plots of actual and predicted scores of DMOS in IVF 

for all and independent distortions of TID2008 (a)-(e) and LIVE-IQA (f)-(k). 

 

The PLCC and SROCC values between the real and predicted quality scores of images in the testing 

stage for all types of experimentations that are led in the IVF using datasets of TID2008 along 

with LIVE-IQA are calculated. The model's performance was compared to that of other well-known 

models [5-7, 12-19]. The NR-IQA and FR-IQA models were used as comparison models. 

 

Table 2. SROCC for all and individual alterations in IVF with TID2008 dataset. Font Italic 

indicates FR-IQA algorithms, and others are BIQA algorithms 

SROCC ALL AGN BLUR JPEG JPEG2000 

VSI [7] 0.898 0.922 0.952 0.961 0.984 

BRISQUE [12] 0.896 0.829 0.881 0.924 0.832 

DIIVINE [13] 0.889 0.851 0.862 0.866 0.924 

CurveletQA [14] 0.867 0.858 0.882 0.864 0.549 

CORNIA [17] 0.813 0.913 0.932 0.929 0.919 

Our Model 0.934 0.942 0.973 0.964 0.969 

Table 3. PLCC for all and individual alterations in IVF with TID2008 dataset 

PLCC ALL AGN BLUR JPEG JPEG200

0 

CORNIA [17] 0.837 0.911 0.932 0.963 0.929 

Our Model 0.915 0.990 0.988 0.989 0.991 

 

Table 2 and 3 display the comparison of SROCC (Spearman Rank Ordered Correlation Coefficient) 

and PLCC (Pearson’s Linear Correlation Coefficient) values between the true and predicted IQ scores 

using dataset TID2008 that are calculated with the developed model in comparison to other well-

known models during the testing phase. The values are presented for all experiments with individual 

and all distortions using the dataset of TID2008. Despite its simplicity and lack of complexity, the 
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proposed model shows best performance than other well-known models that are described. The 

LIVE-IQA dataset yields comparable results in Table 4 and 5. 

 

Table 4. SROCC for all and individual alterations in IVF with LIVE-IQA. Font Italic indicates FR-

IQA algorithms, and others are BIQA algorithms 

SROCC ALL WN GBLUR JPEG JP2K FF 

PSNR 0.883 0.982 0.807 0.894 0.904 0.894 

VIF [5] 0.963 0.984 0.971 0.982 0.968 0.962 

SSIM [6] 0.948 0.970 0.951 0.973 0.960 0.956 

VSI [7] 0.952 0.983 0.952 0.976 0.960 0.943 

BRISQUE [12] 0.939 0.978 0.951 0.964 0.913 0.876 

DIVINE [13] 0.916 0.984 0.921 0.910 0.913 0.863 

CurveletQA [14] 0.930 0.987 0.965 0.911 0.937 0.900 

BLINDS-IIProb. [15] 0.920 0.978 0.943 0.941 0.950 0.862 

BLINDS-IISVM [15] 0.930 0.969 0.923 0.942 0.928 0.889 

OG-IQA [16] 0.950 0.986 0.961 0.964 0.937 0.898 

CORNIA [17] 0.942 0.976 0.969 0.955 0.943 0.906 

RankIQA+FT [18] 0.981 0.991 0.988 0.978 0.970 0.954 

CNN [19] 0.956 0.978 0.962 0.977 0.952 0.908 

Our Model 0.954 0.981 0.975 0.935 0.959 0.918 

 

Table 5. PLCC for all together with individual distortions in IVF with LIVE-IQA. Font Italic 

indicates FR-IQA algorithms, and others are BIQA algorithms 

PLCC ALL WN GBLUR JPEG JP2K FF 

PSNR 0.864 0.982 0.803 0.878 0.885 0.892 

VIF [5] 0.961 0.992 0.977 0.989 0.980 0.968 

SSIM [6] 0.946 0.986 0.955 0.981 0.971 0.962 

BRISQUE [12] 0.942 0.985 0.950 0.973 0.922 0.903 

DIVINE [13] 0.917 0.988 0.923 0.921 0.922 0.888 

CurveletQA [14] 0.932 0.985 0.969 0.928 0.946 0.918 

BLINDS-IIProb. [15] 0.923 0.985 0.948 0.979 0.963 0.863 

BLINDS-IISVM [15] 0.930 0.979 0.938 0.967 0.934 0.895 

OG-IQA [16] 0.952 0.990 0.967 0.982 0.945 0.911 

CORNIA [17] 0.935 0.951 0.968 0.965 0.951 0.917 

RankIQA+FT [18] 0.982 0.994 0.988 0.986 0.975 0.960 

CNN [19] 0.953 0.984 0.953 0.981 0.953 0.933 

Our Model 0.956 0.991 0.965 0.942 0.947 0.928 

 

Fig. 6 displays the Original Version (OV) and Gaussian Blur distorted versions at five levels (a-e) of 

the image of "I09" present in the dataset TID2008, with Actual Score (DMOS), and Normalized Score 

(NS) shown at the top of each image. The Predicted Scores (PS) of DMOS is given at the bottom of 

every image using IVF. The sub figures (f)-(k) display the equivalent outcomes for the LIVE-IQA 

dataset's GBlur (GB) image of "churchandcapitol". For both datasets, similar findings were achieved 
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in independent validation of individual distortions and all distortions. The proposed model's 

performance measures in IVF generalize its ability to judge IQ regardless of distortions and datasets. 

 

 

 

Fig. 6. The original and distorted images of TID2008 (a)-(e) and LIVE-IQA (f)-(k) with 

predicted scores of DMOS using IVF. 

OV: Gaussian Blur 

(I09) 

DMOS = 9.0 

NS = 0.0 

Gaussian Blur  

(I09_08_1) 

DMOS = 5.5455 

NS = 0.3455 

Gaussian Blur  

(I09_08_2) 

DMOS = 4.6364 

NS = 0.4364 

Gaussian Blur  

(I09_08_3) 

DMOS = 3.6061 

NS = 0.5394 

    

(a). PS = 0.0633 (b). PS = 0.3433 (c). PS = 0.4528 (d). PS = 0.5267 

Gaussian Blur  

(I09_08_4) 

DMOS = 2.1471 

NS = 0.6853 

OV: GB 

(churchandcapitol) 

DMOS = 0.0 

NS = 0.0 

GB 

(churchandcapitol.1) 

DMOS = 30.9535 

NS = 0.3095 

GB 

(churchandcapitol.2) 

DMOS = 36.6989 

NS = 0.367 

    

(e). PS = 0.5267 (f). PS = 0.029 (g). PS = 0.2881 (h). PS = 0.3668 

GB 

(churchandcapitol.3) 

DMOS = 46.448 

NS = 0.4645 

GB 

(churchandcapitol.4) 

DMOS = 55.0648 

NS = 0.5506 

GB 

(churchandcapitol.5) 

DMOS = 82.2887 

NS = 0.8229 

   

(i). PS = 0.4595 (j). PS = 0.5103 (k). PS = 0.7905 
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c. Training, Testing and Results using CVF 

In CVF, the developed model was trained using all images of one dataset and all images of other 

dataset was used for testing. For each experiment, all images and individual distortion images are 

used once. The image counts of CVF experiments are described in Table 6. For example, in the 

experiment conducted with AGN 125 TID2008 dataset images were operated for training and 174 

LIVE-IQA dataset images were utilized for testing. In the counterpart experiment, the roles of the 

images are swapped as testing and training images respectively. 

 

Table 6. Count of test and train images in the CVF 
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TR/TE 125 174 125 227 125 174 125 233 425 982 

 

The sub figures (a) and (b) of Fig. 7 show loss function plots for the tests conducted in the CVF, that 

is, training on one dataset and testing with another dataset. The loss function's in equation (1) 

monotonic decline throughout the training stage for all images composed and separate distortions 

demonstrate the proposed model IQA's generic capabilities. The model's computational economy and 

efficiency are further validated by the fact that in both experimental setups, only 50 epochs were used 

to train the proposed CNN model. The scatter charts also illustrate that the model's capability for 

learning is not dependent on the considered datasets along with the distortions. 

 
Fig. 7. Loss function (MSE) plots in the training stage for CVF. 

 

The scatter diagrams of the real and predicted scores of DMOS in CVF of all images composed 

and distinct distortions that are available in both datasets are displayed in Fig. 8, training with 

TID2008 and testing with LIVE-IQA respectively. 

  

(a). Trained with TID2008 and tested  

with LIVE IQA. 

(b). Trained with LIVE IQA and tested  

with TID2008. 
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Fig. 8. Scatter plots of actual and predicted scores of DMOS in CVF with training dataset as 

TID2008 and test dataset as LIVE-IQA (a)-(e), and training dataset as LIVE-IQA and test 

dataset as TID2008 (f)-(j) respectively. 

 

In the testing phase of the CVF, Table 7 shows the values of PLCC and SROCC among the true and 

predicted scores of image quality that are calculated by the developed model. The efficiency of all 

the trials with all distortions together as well as individual distortions make use of the dataset of 

TID2008 for training along with the dataset of LIVE-IQA for testing are listed. Table 8 displays 

comparable results using the dataset of LIVE-IQA for training and dataset of TID2008 for testing. 

The developed model's performance metrics further combines the superior ability of IQA, which is 

not dependent of distortions and datasets. 

 

Table 7. PLCC, and SROCC for all and individual distortions in CVF with training and testing 

using TID2008 and LIVE-IQA respectively 

Our model ALL AGN BLUR JPEG JPEG2000 

PLCC 0.857 0.907 0.897 0.915 0.904 

SROCC 0.896 0.975 0.922 0.931 0.927 

 

Table 8. PLCC, and SROCC for all and individual distortions in CVF with training and testing 

using LIVE-IQA and TID2008 respectively. 

Our model ALL WN GBLUR JPEG JP2K 

PLCC 0.866 0.965 0.952 0.963 0.908 

SROCC 0.880 0.929 0.922 0.949 0.857 

    
(a). All distortions. (b). Additive Gaussian noise. (c). Gaussian blur. (d). Jpeg compression. 

    
(e). Jpeg2000 compression. (f). All distortions. (g). White noise. (h). Gaussian blurring. 

  

(i). Jpeg compression. (j). Jp2k compression. 
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Fig. 9 demonstrations the OV (a) and Jp2k distorted versions of six levels (b)-(g) of the dataset of 

LIVE-IQA image of "statue", with DMOS, and NS shown at the top of each given image. The 

Predicted Scores (PS) of DMOS is given at the bottom of each and every image using CVF, that is, 

trained using TID2008 and tested make use of LIVEIQA. The sub figures of Fig. 9 (h)-(l) displays 

the equivalent outcomes for the TID2008 dataset's Jpeg compression OV and four versions of "I22". 

For both datasets, similar findings were achieved in independent validation of all distortions along 

with individual distortions. The proposed model's performance measures in CVF generalize its ability 

to judge image quality regardless of distortions and datasets. 

 

Fig. 9. The original and distorted images of LIVE-IQA (a)-(g) training with predicted scores 

of DMOS using CVF. 

OV: Jp2k 

(statue_img95) 

DMOS = 0.0 

NS = 0.0 

Jp2k 

(statue_img102) 

DMOS = 21.8826 

NS = 0.2188 

Jp2k 

(statue_img162) 

DMOS = 25.5479 

NS = 0.2555 

Jp2k 

(statue_img92) 

DMOS = 42.6005 

NS = 0.426 

    
(a). PS = 0.0101 (b). PS = 0.0193 (c). PS = 0.1303 (d). PS = 0.2954 

Jp2k 

(statue_img116) 

DMOS = 49.7286 

NS = 0.4973 

Jp2k 

(statue_img169) 

DMOS = 55.9852 

NS = 0.5599 

Jp2k 

(statue_img227) 

DMOS = 60.7617 

NS = 0.6076 

Jpeg 

(I22) 

DMOS = 9.0 

NS = 0.0 

    

(e). PS = 0.4295 (f). PS = 0.6589 (g). PS = 0.7031 (h). PS = 0.0973 

Jpeg 

(I22_10_1) 

DMOS = 6.0645 

NS = 0.2936 

Jpeg 

(I22_10_2) 

DMOS = 5.5484 

NS = 0.3452 

Jpeg 

(I22_10_3) 

DMOS = 3.4839 

NS = 0.5516 

Jpeg 

(I22_10_4) 

DMOS = 1.4194 

NS = 0.7581 

    

(i). PS = 0.3162 (j). PS = 0.4371 (k). PS = 0.5746 (l). PS = 0.5976 
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6. CONCLUSIONS 

In this work, we presented a CNN framework for BIQA, which falls under the class of NR-IQA model 

group. The developed model feeds the altered images edge maps that are calculated with the SK, to 

the CNN, that extracts the input image's higher-level features. Regression technique is utilized to map 

the image distortions in the features at high level to IQ scores. The investigation results confine that 

the developed model is general, and its ability to estimate quality of image is not dependent to the 

distortions that are accessible in the well-known dataset(s) utilized in the experiment. The model's 

performance measures in terms of PLCC and SROCC values expression that it can compete with the 

best-in-class approaches. 
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