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Abstract 

The perseverance of this research article is to investigate water pollution in 

rivers with a second-order explicit finite difference scheme of advection-

diffusion equation (ADE) and a first-order explicit finite difference scheme 

of ADE. For investigation, two numerical schemes exploit here FTCSCS 

and second-order Lax-Wendroff type of ADE which is our new proposed 

one. In earlier Lax-Wendroff, type scheme existed only for hyperbolic 

partial differential equation (PDE), here a new second-order Lax-Wendroff 

type scheme is proposed for parabolic PDE and in addition assist to 

investigate water pollution with an expectation of better yield compared to 

the existing one. We implement numerical schemes to estimate the pollutant 

in water at different times and different points of water bodies. We 

investigate the numerical behaviour of water pollution by implementing the 

explicit centred difference scheme (FTCSCS) for advection-diffusion and 

for our proposed second-order Lax-Wendroff type scheme. Our 

computational result verifies the qualitative behavior of the solution of ADE 

for various considerations of the parameters. 

 

Keywords: Advection-Diffusion equation, Finite difference schemes, 

FTCSCS, and Lax-Wendroff. 

 

Introduction 

  ADE is a parabolic linear PDE and combination of the advection equation and diffusion equation. It is a 

parabolic type partial differential equation and is derived on the principle of conservation of mass using Fick’s 

law (Socolofsky and Jirka 2002). Many investigators have been studied analytical and numerical solutions for 

higher-dimensional and higher order ADE from many years. In  numerical analysis, numerical stability is 

usually a desired property of numerical algorithms. Stability analysis of finite difference schemes for the 

Navier-Stokes equations is obtained (Rigal 1979). Stability analysis of finite difference schemes for the 

advection-diffusion equation is studied (Chan 1984). A comparison of some numerical methods for the 

advection-diffusion equation is presented (Thongmoon and Mckibbin 2006). An analytical solution of the 

advection diffusion equation for a ground level finite area source is presented (Park and Baik 2008). An 

analytical solution is obtained of the one dimensional ADE by reducing the original ADE into a diffusion 

https://en.wikipedia.org/wiki/Numerical_analysis
https://en.wikipedia.org/wiki/Numerical_algorithm
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equation by introducing another dependent variable (Al-Niami and Ruston 1977). Analytical solution of 1D 

ADE with variable coefficients is presented in a finite domain by using Laplace transformation technique. In 

that process new independent space and time variables have been introduced (Kumar, A., D. K. Jaiswal and 

N. Kumar. 2010). Two explicit finite difference schemes such as FTBSCS and FTCSCS, for solving the ADE 

numerically are studied in this article. A numerical technique was proposed in 1960 by P.D. Lax and B. 

Wendroff for solving, approximately, systems of hyperbolic conservation laws. Here in this article a new 

explicit second order Lax-Wendroff type scheme is proposed for solving ADE numerically where we 

discretise the first order terms of ADE in second order similarly as Lax-Wendroff schemes for hyperbolic 

partial differential equation.  

By exploiting ADE, the physical phenomena where particles, energy or other physical quantities are 

transferred inside a physical system due to diffusion and advection can be described. ADE is applicable in 

many disciplines like groundwater hydrology, chemical engineering bio sciences, environmental sciences and 

petroleum engineering to describe the behaviour of solute concentration. Water pollution has been one of the 

major environmental problems in fronts of governments and world leaders for decades. With the development 

of economy and improvement way of living standard, environmental problems have aroused wide attention. 

Water pollution is one of the most important concerns and may cause many accompanying problems. Actually, 

various kind of pollution caused various perilous effect in our daily life, environmental pollution is the 

breakneck risk in this 21st century. The pollution affects human life and its surrounding environment and 

sometimes pollutants can travel to areas very far from the source of emission thereby affecting livings 

organisms in that area. One of the ways to understand how pollutants disperse in the environment is through 

mathematical simulation and stated that simulation of water pollution is useful in providing information about 

the spread of pollution in area, the scale and level of pollution and estimation. 

Water pollution can be demonstrated by one-dimensional advection-diffusion equation (ADE). It is derived 

on the principle of conservation of mass using Fick’s 1st law. This equation considers physical phenomena 

where in the diffusion process particles are moving with certain velocity from higher concentration to lower 

concentration. The analytical and numerical solutions along with an initial condition and two boundary 

conditions help to realize the contaminant or pollutant concentration, distribution and behaviour through an 

open medium say rivers, lakes and porous medium. With the above discussion in view, our intension is to 

investigate a second order explicit finite difference scheme to solve ADE. 

Review of Related Studies 

LeVeque, R. J., & Leveque, R. J. (1992) showed a study on numerical methods for conservation laws. Febi 

Sanjaya and Sudi Mungkasi. (2017) conducted a study on a simple but accurate explicit finite difference 

method for the advection-diffusion equation. The way to find the numerical solution of advection-diffusion 

equation was showed on that article.  P.D Lax; B. Wendroff (1960) conducted a study on systems of 

conservation laws, where Lax-Wendroff scheme for hyperbolic partial differential equation was showed. 

Azad, T.M.A.K., M. Begum and L.S.Andallah. (2015) conducted a study on an explicit finite difference 

scheme for advection diffusion equation, where they studied an explicit finite difference scheme for advection-

diffusion equation. Ahmed S.G. (2012) conducted a study on a Numerical Algorithm for Solving Advection-

Diffusion Equation with Constant and sVariable Coefficients. Murat Sari, Gurhan Gurarslan, and Asuman 

Zeytinoglu. (2010) showed a study on higher order finite difference approximation for solving advection-

diffusion equation. Leon, L. F., & Austria, P. M. (1987) conducted a study on stability Criterion for Explicit 

http://www.dtic.mil/get-tr-doc/pdf?AD=ADA385056
http://www.dtic.mil/get-tr-doc/pdf?AD=ADA385056
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Scheme on the solution of Advection Diffusion Equation. Chan, T. F. (1984) conducted a study on stability 

analysis of finite difference schemes for the advection diffusion equation. Charney, J. G., Fjortoft, R., & 

Neumann, J. V. (1950) showed a study on numerical integration of the barotropic vorticity equation, a way 

for stability analysis was shown on this article. Researchers (Kumar et.al 2009) [5] presented an analytical 

solution of one- dimensional advection-diffusion equation with variable coefficients in a finite domain using 

Laplace transformation technique. Agusta and Bamingbola [24] studied on the numerical treatment of the 

mathematical model for water pollution. They used the implicit centered difference scheme in space and a 

forward difference method in time for the evaluation of the generalized transport equation. Changiun Zhu, 

Liping Wa and Sha [26] made a numerical simulation on river water pollution by using grey differential model. 

They corrected the model in finding the truncation error and found that the obtained results from the grey 

model are excellent and reasonable. M.M. Rahman. L.S. Andallah [20] presented a simulation of water 

pollution by finite difference method. They estimated and analyzed the extent of water pollution at different 

time and points. 

Mathematical Model  

The simplest one-dimensional ADE is 

𝜕𝑐

𝜕𝑥
+ 𝑣

𝜕𝑐

𝜕𝑡
= 𝐷

𝜕2𝑐

𝜕𝑥2
                                                          (1) 

Where                                                            𝑥𝜖[𝑎, 𝑏], 𝑡𝜖[0, 𝑇] 

With initial condition,                                 𝑐(0, 𝑥) = 𝑐0(𝑥);                                                                   

Boundary condition                                        𝑐(𝑡, 𝑎) = 𝑐𝑎(𝑡); 

And                                                                  𝑐(𝑡, 𝑏) = 𝑐𝑏(𝑡);                                            

Where c is the concentration of the transference elements; D is the diffusion co-efficient and v is the speed 

of field. 

Numerical Method 

With the assistance of finite difference method ADE is solved numerically. Here explicit FTCSCS and 

proposed second order Lax-Wendroff type scheme of ADE are applied for numerical solutions. 

Finite difference formulae  

Derivatives in equation (1) are approximated by truncated Taylor Series expansions, 

1st order forward difference formula in terms of time, 

𝜕𝑐(𝑥𝑖
𝑛)

𝜕𝑡
≈

𝑐𝑖
𝑛+1 − 𝑐𝑖

𝑛

∆𝑡
                                                                  (2) 

1st order backward difference formula in terms of space, 
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𝜕𝑐(𝑥𝑖
𝑛)

𝜕𝑥
≈

𝑐𝑖
𝑛 − 𝑐𝑖−1

𝑛

∆𝑥
                                                                 (3) 

1st order central difference formula in terms of space, 

𝜕𝑐(𝑥𝑖
𝑛)

𝜕𝑥
≈

𝑐𝑖+1
𝑛 − 𝑐𝑖−1

𝑛

2∆𝑥
                                                              (4) 

2nd order central difference formula in terms of space, 

𝜕2𝑐(𝑥𝑖
𝑛)

𝜕𝑥2
≈

𝑐𝑖+1
𝑛 − 2𝑐𝑖

𝑛 + 𝑐𝑖−1 
𝑛

(∆𝑥)2
                                                  (5) 

Explicit centered difference scheme (FTCSCS) 

 Substituting equations (2), (4), (5) into equation (1), we get 

𝑐𝑖
𝑛+1 − 𝑐𝑖

𝑛

∆𝑡
+ 𝑣

𝑐𝑖+1
𝑛 − 𝑐𝑖−1

𝑛

2∆𝑥
= 𝐷

𝑐𝑖+1
𝑛 − 2𝑐𝑖

𝑛 + 𝑐𝑖−1
𝑛

(∆𝑥)2
 

⇒ 𝑐𝑖
𝑛+1 = 𝑐𝑖

𝑛 −
𝑣∆𝑡

2∆𝑥
(𝑐𝑖+1

𝑛 − 𝑐𝑖−1
𝑛 ) +

𝐷∆𝑡

(∆𝑥)2
(𝑐𝑖+1

𝑛 − 2𝑐𝑖
𝑛 + 𝑐𝑖−1

𝑛 )            (6) 

Taking 𝛼 =
𝑣∆𝑡

∆𝑥
 and 𝛾 =

𝐷∆𝑡

(∆𝑥)2
 

⟹ 𝑐𝑖
𝑛+1 = 𝑐𝑖

𝑛 −
𝛼

2
(𝑐𝑖+1

𝑛 − 𝑐𝑖−1
𝑛 ) + 𝛾(𝑐𝑖+1

𝑛 − 2𝑐𝑖
𝑛 + 𝑐𝑖−1

𝑛 ) 

⟹ 𝑐𝑖
𝑛+1 = (

𝛼

2
+ 𝛾) 𝑐𝑖−1

𝑛 + (1 − 2𝛾)𝑐𝑖
𝑛 + (𝛾 −

𝛼

2
) 𝑐𝑖+1

𝑛                             (7) 

Which is known as the explicit centered difference scheme for ADE and it is also known as FTCSCS 

technique. 

Stability condition of FTCSCS 

The above scheme (7) satisfies the convex combination, 

We can conclude that the FTCSCS is stable for 

                                                                0 ≤ 𝛼 ≤ 1  and  0 ≤ 𝛾 ≤
1

2
        

                                             0 ≤
𝑣∆𝑡

∆𝑥
 ≤ 1  and 0 ≤

𝐷∆𝑡

(∆𝑥)2
≤

1

2
                                                           (8) 

Explicit second order Lax-Wendroff type Scheme of ADE 

For Explicit second order Lax-Wendroff type scheme of ADE, we discretize advective part in half time-step 

Lax-Friedrich scheme, then substituting that value in half-step Leapfrog scheme and combining with centered 

diffusion part explicit second order Lax-Wendroff type scheme of ADE is found. 
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Half-time step lax-Friedrich scheme at the point (𝑡𝑛, 𝑥𝑖): 

𝑐
𝑖+

1
2

𝑛+
1
2 =

1

2
(𝑐𝑖+1

𝑛 + 𝑐𝑖
𝑛) −

𝑣∆𝑡

2∆𝑥
(𝑐𝑖+1

𝑛 − 𝑐𝑖
𝑛)                                        (9) 

𝑐
𝑖−

1
2

𝑛+
1
2 =

1

2
(𝑐𝑖

𝑛 + 𝑐𝑖−1
𝑛 ) −

𝑣∆𝑡

2∆𝑥
(𝑐𝑖

𝑛 − 𝑐𝑖−1
𝑛 )                                         (10) 

Half-step Leapfrog scheme at the point (𝑡𝑛, 𝑥𝑖): 

𝑐𝑖
𝑛+1 − 𝑐𝑖

𝑛

∆𝑡
+ 𝑢

[
 
 
 
 𝑐

𝑖+
1
2

𝑛+
1
2 − 𝑐

𝑖−
1
2

𝑛+
1
2

∆𝑥

]
 
 
 
 

= 0                                                      (11) 

By centred difference discretization of 
𝜕2𝑐

𝜕𝑥2
 at the point (𝑡𝑛, 𝑥𝑖), we have 

𝜕2𝑐(𝑥𝑖
𝑛)

𝜕𝑥2
≈

𝑐𝑖+1
𝑛 − 2𝑐𝑖

𝑛 + 𝑐𝑖−1
𝑛

(∆𝑥)2
                                                             (12) 

Combining equation (11), (12) in (1) we obtain, 

𝑐𝑖
𝑛+1 − 𝑐𝑖

𝑛

∆𝑡
+ 𝑣

[
 
 
 
 𝑐

𝑖+
1
2

𝑛+
1
2 − 𝑐

𝑖−
1
2

𝑛+
1
2

∆𝑥

]
 
 
 
 

= 𝐷
𝑐𝑖+1

𝑛 − 2𝑐𝑖
𝑛 + 𝑐𝑖−1

𝑛

(∆𝑥)2
 

             ⟹ 𝑐𝑖
𝑛+1 − 𝑐𝑖

𝑛 +
𝑣∆𝑡

∆𝑥
[𝑐

𝑖+
1
2

𝑛+
1
2 − 𝑐

𝑖−
1
2

𝑛+
1
2] = 𝐷∆𝑡 [

𝑐𝑖+1
𝑛 − 2𝑐𝑖

𝑛 + 𝑐𝑖−1
𝑛

(∆𝑥)2
]     

⟹ 𝑐𝑖
𝑛+1 = 𝑐𝑖

𝑛 −
𝑣∆𝑡

∆𝑥
[𝑐

𝑖+
1
2

𝑛+
1
2 − 𝑐

𝑖−
1
2

𝑛+
1
2] + 𝐷∆𝑡 [

𝑐𝑖+1
𝑛 − 2𝑐𝑖

𝑛 + 𝑐𝑖−1
𝑛

(∆𝑥)2
]              (13) 

Now substituting the value of 𝑐
𝑖+

1

2

𝑛+
1

2 and 𝑐
𝑖−

1

2

𝑛+
1

2 in equation (13) ,we have 

⟹ 𝑐𝑖
𝑛+1 = 𝑐𝑖

𝑛 −
𝑣∆𝑡

∆𝑥
[
1

2
(𝑐𝑖+1

𝑛 + 𝑐𝑖
𝑛) −

𝑣∆𝑡

2∆𝑥
(𝑐𝑖+1

𝑛 − 𝑐𝑖
𝑛) −

1

2
(𝑐𝑖

𝑛 + 𝑐𝑖−1
𝑛 ) +

𝑣∆𝑡

2∆𝑥
(𝑐𝑖

𝑛 − 𝑐𝑖−1
𝑛 )]

+
𝐷∆𝑡

(∆𝑥)2
[𝑐𝑖+1

𝑛 − 2𝑐𝑖
𝑛 + 𝑐𝑖−1

𝑛 ] 

⟹ 𝑐𝑖
𝑛+1 = 𝑐𝑖

𝑛 −
𝑣∆𝑡

∆𝑥
[
1

2
(𝑐𝑖+1

𝑛 + 𝑐𝑖−1
𝑛 ) −

𝑣∆𝑡

2∆𝑥
(𝑐𝑖+1

𝑛 − 2𝑐𝑖
𝑛 + 𝑐𝑖−1

𝑛 )] +
𝐷∆𝑡

(∆𝑥)2
[𝑐𝑖+1

𝑛 − 2𝑐𝑖
𝑛 + 𝑐𝑖−1

𝑛 ] 

Taking 𝛼 =
𝑣∆𝑡

∆𝑥
 and 𝛾 =

𝐷∆𝑡

(∆𝑥)2
 we have 
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               ⟹ 𝑐𝑖
𝑛+1 = 𝑐𝑖

𝑛 − 𝛼 [
1

2
(𝑐𝑖+1

𝑛 + 𝑐𝑖−1
𝑛 ) − 𝛼(𝑐𝑖+1

𝑛 − 2𝑐𝑖
𝑛 + 𝑐𝑖−1

𝑛 )] + 𝛾[𝑐𝑖+1
𝑛 − 2𝑐𝑖

𝑛 + 𝑐𝑖−1
𝑛 ] 

⟹ 𝑐𝑖
𝑛+1 =

1

2
(𝛼2 + 𝛼 + 2𝛾)𝑐𝑖−1

𝑛 + (1 − 2𝛾 − 𝛼2)𝑐𝑖
𝑛 +

1

2
(2𝛾 − 𝛼 + 𝛼2)𝑐𝑖+1

𝑛      (14)  

Which is required second order Lax-Wendroff type scheme of ADE. 

Stability Condition second order Lax-Wendroff scheme with max-principle 

The above equation(14) satisfies the convex combination, we obtain, 

0 ≤
1

2
(𝛼2 + 𝛼 + 2𝛾) ≤ 1                                                         (15) 

0 ≤ (1 − 2𝛾 − 𝛼2) ≤ 1                                                             (16) 

0 ≤
1

2
(2𝛾 − 𝛼 + 𝛼2) ≤ 1                                                         (17) 

Then the new solution is a convex combination of the two previous solutions. That is, the solution at new 

time-step (𝑛 + 1) at a spatial node 𝑖 is an average of the solution at the previous time-step at the spatial-nodes 

𝑖 − 1 , 𝑖 𝑎𝑛𝑑 𝑖 + 1 . This means that the extreme value of the new solution is the average values of the previous 

two solutions at the three consecutive nodes. Therefore, the new solution continuously depends on the initial 

value 𝑐𝑖
0, 𝑖 = 1,2,3, ………… . . ,𝑀. 

Therefore, from (15), (16), (17) we have 

     0 ≤ 𝛼2 + 2𝛾 ≤ 1,   0 ≤ 𝛾 < 1 and  0 ≤ 𝛼 < 1                                           (18) 

Which is required stability condition for second order Lax-Wendroff type scheme of ADE. 

Results and Discussion: 

Imputation of Data into the Numerical Scheme 

To incorporate the data for the different variable and parameters 

Time 𝑡 = 60 ∗ 60𝑠𝑒𝑐𝑜𝑛𝑑𝑠; 

Length 𝑥 = 50𝑚; 

Velocity 𝑣 = 0.02𝑚 /𝑠; 

Diffusion co-efficient 𝐷 = 0.01𝑚2/𝑠; 

Initial concentration 𝑐(𝑥, 10) =
1

√4𝜋𝐷
𝑒𝑥𝑝 (

−(𝑥−10𝑣)2

4𝐷
) 

The concentration on left boundary 𝑐(1, 𝑡) = 1𝑚𝑔/𝑚3 

The concentration on right boundary 𝑐(𝑒𝑛𝑑, 𝑡) =
1

√4𝜋𝐷𝑡
𝑒𝑥𝑝 (

−(𝑥𝑓−𝑣𝑡)2

4𝐷𝑡
)𝑚𝑔/𝑚3 ; 

Number of temporal grid points 𝑛𝑡 = 1600; 

Number of spatial grid points 𝑛𝑥 = 80; 

The temporal grid size ∆𝑡 =
𝑡−𝑡0

𝑛𝑡
; 
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The spatial grid size ∆𝑥 =
𝑥−𝑥0

𝑛𝑥
; 

Numerical solution according to input data for FTCSCS 

Here in this part, numerical simulation results of FTCSCS of ADE is represented for pollutant transportation 

according to increase of time. The following figure 1 to 6 shows how the pollutant concentration dispersed in 

a river water with increase of time. Water pollution in case of river the pollutants are discharged directly into 

water bodies without treating it first. 

The following figure 1 shows that the solution surface for the pollutant transportation at 𝑡 = 1 minute. From 

this figure, the pollutant transportation increases due to time is noticeable. 

 

  
Figure 1(a) Solution surface for 

pollutant transportation in river at time 

t=1min with velocity 𝑣 = 0.02𝑚/

𝑠, Diffusion co-efficient 𝐷 = 0.01𝑚2/

𝑠; 

 

Figure 1(b) Spatial pollutant 

transportation in river at time t=1min 

with velocity 𝑣 = 0.02𝑚/𝑠, Diffusion 

co-efficient 𝐷 = 0.01𝑚2/𝑠; 

 

 

  

Figure 2(a) Solution surface for pollutant 

transportation in river at time 𝑡 = 5𝑚𝑖𝑛 with 

velocity 𝑣 = 0.02𝑚/𝑠, Diffusion co-

efficient 𝐷 = 0.01𝑚2/𝑠; 

Figure 2(b) Spatial pollutant 

transportation in river at time 𝑡 =

5𝑚𝑖𝑛 with velocity 𝑣 = 0.02𝑚/

𝑠, Diffusion co-efficient 𝐷 =

0.01𝑚2/𝑠; 

 

  

Figure 3(a) Solution surface for pollutant 

transportation in river at time 𝑡 =

10𝑚𝑖𝑛 with velocity 𝑣 = 0.02𝑚/

𝑠, Diffusion co-efficient 𝐷 = 0.01𝑚2/𝑠; 

Figure 3(b) Spatial pollutant 

transportation in river at time 𝑡 =

10𝑚𝑖𝑛 with velocity 𝑣 = 0.02𝑚/
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𝑠, Diffusion co-efficient 𝐷 = 0.01𝑚2/

𝑠; 

 

  

Figure 4(a) Solution surface for pollutant 

transportation in river at time 𝑡 =

20𝑚𝑖𝑛 with velocity 𝑣 = 0.02𝑚/

𝑠, Diffusion co-efficient 𝐷 = 0.01𝑚2/𝑠; 

Figure 4(b) Spatial pollutant 

transportation in river at time 𝑡 =

20𝑚𝑖𝑛 with velocity 𝑣 = 0.02𝑚/

𝑠, Diffusion co-efficient 𝐷 =

0.01𝑚2/𝑠; 

 

  

Figure 5(a) Solution surface for pollutant 

transportation in river at time 𝑡 =

30𝑚𝑖𝑛 with velocity 𝑣 = 0.02𝑚/

𝑠, Diffusion co-efficient 𝐷 = 0.01𝑚2/𝑠; 

Figure 5(b) Spatial pollutant 

transportation in river at time 𝑡 =

30𝑚𝑖𝑛 with velocity 𝑣 = 0.02𝑚/

𝑠, Diffusion co-efficient 𝐷 =

0.01𝑚2/𝑠; 

 

 

 

 

 

 

 

 

 

 

 

 

From the above figure 1(a), 2(a),3(a), 4(a), 5(a) and 6(a) shows the solution surface for the pollutant 

transportation at different time. From figure 1(b), 2(b), 3(b), we notice that at time 𝑡 = 1𝑚𝑖𝑛   the 

concentration distribution is nebulous; at 𝑡 = 5𝑚𝑖𝑛 the pollutant concentration is transported on the boundary 

in very small; at 𝑡 = 10𝑚𝑖𝑛 the pollutant concentration distribution increase along boundary, similarly when 

time is increased in figure 4(b), 5(b)  with time 𝑡 = 20𝑚𝑖𝑛 and 𝑡 = 30𝑚𝑖𝑛 gradually transportation of 

pollutants along boundary is noticeable. Finally, in figure 6(b), when time 𝑡 = 1ℎ𝑜𝑢𝑟,  the pollutant 

  

Figure 6(a) Solution surface for 

pollutant transportation in river at time 

𝑡 = 1ℎ𝑜𝑢𝑟 with velocity 𝑣 = 0.02𝑚/

𝑠, Diffusion co-efficient 𝐷 = 0.01𝑚2/

𝑠; 

Figure 6(b) Spatial pollutant 

transportation in river at time 𝑡 =

1ℎ𝑜𝑢𝑟 with velocity 𝑣 = 0.02𝑚/

𝑠, Diffusion co-efficient 𝐷 =

0.01𝑚2/𝑠; 
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concentration in a river are transported all along the boundary of the river water. The stability condition of 

one-dimensional ADE for FTCSCS are 0 ≤ 𝛼 =
𝑣∆𝑡

∆𝑥
≤ 1 and 0 ≤ 𝛾 =

𝐷∆𝑡

(∆𝑥)2
≤

1

2
. This will be continued until 

the stability condition are satisfied. 

The following figure 7, concentration profile is discussed with respect to different time. In this figure the 

concentration change with increase of time is demonstrated; from starting time 𝑡 = 1𝑚𝑖𝑛 the rate of 

concentration of pollutant is very smaller than the last time 𝑡 = 30𝑚𝑖𝑛. 

 

 

                 Figure 7: Concentration Distribution at different time for FTCSCS. 

 

The following figure 8, is described the concentration with respect to space. In this figure the concentration 

distribution at different distance and concentration parameter are delineated; the curve identified the change 

of concentration in the position x=5meter, x=10meter, x=20meter, x=30meter, x=40meter, x=50meter. 

Finally, it can be said that the pollutant concentration is increased in a still position with respect to time.  

  

 

               Figure 8: Concentration distribution for FTCSCS at different position. 

Numerical solution according to input data for second order Lax-Wendroff type  

Here in this part, numerical simulation results of second order Lax-Wendroff type scheme of ADE is 

represented for pollutant transportation according to increase of time. The following figure 9 to 14 shows how 

the pollutant concentration dispersed in river water with increase in time. Water pollution in case of river the 

pollutants are discharged directly into water bodies without treating it first. 

The following figure 9 shows that the solution surface for the pollutant transportation at 𝑡 = 1𝑚𝑖𝑛𝑢𝑡𝑒. From 

this figure, the pollutant transportation increase due to time is noticiable, 

  
Figure 9(a) Solution surface for 

pollutant transportation in river at time 

t=1min with velocity 𝑣 = 0.02𝑚/

Figure 9(b) Spatial pollutant 

transportation in river at time t=1min 

with velocity 𝑣 = 0.02𝑚/𝑠, Diffusion 

co-efficient 𝐷 = 0.01𝑚2/𝑠; 
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𝑠, Diffusion co-efficient 𝐷 =

0.01𝑚2/𝑠; 

 

 

 

 
 

Figure 10(a) Solution surface for pollutant 

transportation in river at time 𝑡 =

5𝑚𝑖𝑛 with velocity 𝑣 = 0.02𝑚/

𝑠, Diffusion co-efficient 𝐷 = 0.01𝑚2/𝑠; 

Figure 10(b) Spatial pollutant 

transportation in river at time 𝑡 = 5𝑚𝑖𝑛 

with velocity 𝑣 = 0.02𝑚/𝑠, Diffusion 

co-efficient 𝐷 = 0.01𝑚2/𝑠; 

 

  

Figure 11(a) Solution surface for 

pollutant transportation in river at time 

𝑡 = 10𝑚𝑖𝑛 with velocity 𝑣 = 0.02𝑚/

𝑠, Diffusion co-efficient 𝐷 = 0.01𝑚2/

𝑠; 

Figure 11(b) Spatial pollutant 

transportation in river at time 𝑡 =

10𝑚𝑖𝑛 with velocity 𝑣 = 0.02𝑚/

𝑠, Diffusion co-efficient 𝐷 =

0.01𝑚2/𝑠; 

 

 
 

Figure 12(a) Solution surface for 

pollutant transportation in river at time 

𝑡 = 20𝑚𝑖𝑛 with velocity 𝑣 = 0.02𝑚/

𝑠, Diffusion co-efficient 𝐷 = 0.01𝑚2/𝑠; 

Figure 12(b) Spatial pollutant 

transportation in river at time 𝑡 =

20𝑚𝑖𝑛 with velocity 𝑣 = 0.02𝑚/

𝑠, Diffusion co-efficient 𝐷 =

0.01𝑚2/𝑠; 
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Figure 13(a) Solution surface for 

pollutant transportation in river at time 

𝑡 = 30𝑚𝑖𝑛 with velocity 𝑣 = 0.02𝑚/

𝑠, Diffusion co-efficient 𝐷 = 0.01𝑚2/

𝑠; 

Figure 13(b) Spatial pollutant 

transportation in river at time 𝑡 =

30𝑚𝑖𝑛 with velocity 𝑣 = 0.02𝑚/

𝑠, Diffusion co-efficient 𝐷 =

0.01𝑚2/𝑠; 

 

  

Figure 14(a) Solution surface for 

pollutant transportation in river at time 

𝑡 = 1ℎ𝑜𝑢𝑟 with velocity 𝑣 = 0.02𝑚/

𝑠, Diffusion co-efficient 𝐷 = 0.01𝑚2/

𝑠; 

Figure 14(b) Spatial pollutant 

transportation in river at time 𝑡 =

1ℎ𝑜𝑢𝑟 with velocity 𝑣 = 0.02𝑚/

𝑠, Diffusion co-efficient 𝐷 = 0.01𝑚2/

𝑠; 

 

From the above figure 9(a), 10(a), 11(a), 12(a), 13(a) and 14(a) shows the solution surface for the pollutant 

transportation at different time. From figure 9(b), 10(b), 11(b), we notice that at time 𝑡 = 1𝑚𝑖𝑛   the 

concentration distribution is nebulous; at 𝑡 = 5𝑚𝑖𝑛 the pollutant concentration is transported on the boundary 

in very small; at 𝑡 = 10𝑚𝑖𝑛, the pollutant concentration distribution increase along boundary, similarly when 

time is increased in figure 12(b), 13(b)  with time 𝑡 = 20𝑚𝑖𝑛 and 𝑡 = 30𝑚𝑖𝑛 gradually transportation of 

pollutants along boundary is noticeable. Finally, in figure 14(b), when time 𝑡 = 1ℎ𝑜𝑢𝑟,  the pollutant 

concentration in river are transported all along the boundary of the river water. The stability condition of 1-D 

ADE for Lax-Wendroff type are  0 ≤ 𝛼2 + 2𝛾 ≤ 1,   0 ≤ 𝛾 =
𝐷∆𝑡

(∆𝑥)2
< 1 and  0 ≤ 𝛼 =

𝑣∆𝑡

∆𝑥
< 1 . This will be 

continued until the stability condition are satisfied. 

The following figure 15, concentration profile is discussed with respect to different time. In this figure the 

concentration change with increase of time is demonstrated; from starting time 𝑡 = 1𝑚𝑖𝑛 the rate of 

concentration of pollutant is very smaller than the last time 𝑡 = 30𝑚𝑖𝑛. 

 
Figure 15: Concentration Distribution at different time for Lax-Wendroff type. 
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The following figure 16, described the concentration with respect to space. In this figure the concentration 

distribution at different distance and concentration parameter are delineated; the curve identified the change 

of concentration in the position x=5meter, x=10meter, x=20meter, x=30meter, x=40meter, x=50meter. 

Finally, it can be said that the pollutant concentration is increased in a still position with respect to time.  

 

Figure 16: Concentration distribution for Lax-Wendroff type at different position. 

Numerical Simulation for Different Velocity and Diffusion Rate for FTCSCS 

This section represents the numerical simulation results for transportation of pollutant in ariver with increasing 

water flow velocity and increasing diffusion co-efficient. To check the accuracy of the numerical scheme by 

FTCSCS technique for the ADE, we implement the model for some artificial data for the transport of the 

pollutant in river. Our aim is to show that for the river pollution, any substance with bigger diffusion results a 

wider pollutant front. 

In the following figure 17, the diffusion rate is fixed and consider the concentration distribution at different 

velocity. 

 

Figure 17: Concentration distribution of ADE(FTCSCS) at fixed diffusion and different velocity at time 𝑡 =

20𝑚𝑖𝑛. 

The above figure 17 shows the with fixed diffusion rate 𝐷 = 0.01𝑚2/𝑠 and increase of velocity from 𝑣 =

0.02𝑚/𝑠 ,  to  𝑣 = 0.021𝑚/𝑠 , to 𝑣 = 0.022𝑚/𝑠 , to 𝑣 = 0.023𝑚/𝑠 , to 𝑣 = 0.024𝑚/𝑠 , then concentration 

rate is increased along the boundary. 

The following figure18 represents the change of concentration with respects to fixed velocity and different 

diffusion rate. 

 

Figure 18: Concentration distribution of ADE(FTCSCS) with fixed velocity and different diffusion rate at 

time 𝑡 = 20𝑚𝑖𝑛. 

In the above figure 18 the velocity is fixed 𝑣 = 0.02𝑚/𝑠 but the diffusion rate is changes from 𝐷 =

0.01𝑚2/𝑠, to 𝐷 = 0.02𝑚2/𝑠 ,to 𝐷 = 0.03𝑚2/𝑠 ,to 𝐷 = 0.04𝑚2/𝑠 ,to 𝐷 = 0.05𝑚2/𝑠. This have seen that 

with increase of diffusion rate with fixed velocity the both transportation and dispersion happened here along 

the boundary the concentration distribution is increased. 

0 500 1000 1500 2000 2500
0

0.2

0.4

0.6

0.8

1

Distance

C
on

ce
nt

ra
ti

on

 

 
x=5m

x=10m

x=20m

x=30m

x=40m

x=50m

0 5 10 15 20 25 30 35 40 45 50
0

0.2

0.4

0.6

0.8

1

Distance

C
on

ce
nt

ra
tio

n

 

 

D=0.01m
2
/s,v=0.02m/s

D=0.01m
2
/s,v=0.021m/s

D=0.01m
2
/s,v=0.022m/s

D=0.01m
2
/s,v=0.023m/s

D=0.01m
2
/s,v=0.024m/s

0 5 10 15 20 25 30 35 40 45 50
0

0.2

0.4

0.6

0.8

1

Distance

C
o

n
ce

n
tr

at
io

n

 

 

D=0.01m
2
/s,v=0.02m/s

D=0.02m
2
/s,v=0.02m/s

D=0.03m
2
/s,v=0.02m/s

D=0.04m
2
/s,v=0.02m/s

D=0.05m
2
/s,v=0.02m/s



Mathematical Statistician and Engineering Applications 

ISSN: 2326-9865 

 

 
24 

 
Vol. 71 No. 2 (2022) 

http://philstat.org.ph 

 

The following figure 19 shows the changed of concentration distribution of pollutant at different velocity and 

different rate of diffusion. 

 

Figure 19: Concentration Distribution of ADE(FTCSCS) at different velocity and different rate of diffusion 

at 𝑡 = 20𝑚𝑖𝑛. 

The above figure 19 shows the change of concentration at different diffusion 𝐷 = 0.01𝑚2/𝑠 to 𝐷 =

0.02𝑚2/𝑠 to 𝐷 = 0.03𝑚2/𝑠 to 𝐷 = 0.04𝑚2/𝑠 to 𝐷 = 0.05𝑚2/𝑠 and different velocity 𝑣 = 0.02𝑚/𝑠 to 𝑣 =

0.021𝑚/𝑠 to 𝑣 = 0.022𝑚/𝑠 to 𝑣 = 0.023𝑚/𝑠 to 𝑣 = 0.024𝑚/𝑠. 

As this is known that the stability condition of the scheme by FTCSCS technique are 0 ≤ 𝛼 =
𝑣∆𝑡

∆𝑥
≤ 1 and 

0 ≤ 𝛾 =
𝐷∆𝑡

(∆𝑥)2
≤

1

2
. This will be continued until the stability condition are satisfied. 

Numerical Simulation for Different Velocity and Diffusion Rate for second order Lax-Wendroff type  

This section represents the numerical simulation results for transportation of pollutant in a river with 

increasing water flow velocity and increasing diffusion co-efficient. To check the accuracy of the numerical 

scheme by second order Lax-Wendroff type technique for the ADE, we implement the model for some 

artificial data for the transport of the pollutant in a river. Our aim is to show that for the river pollution, any 

substance with bigger diffusion results a wider pollutant front. 

In the following figure 20, the diffusion rate is fixed and consider the concentration distribution at different 

velocity. 

 
Figure 20: Concentration distribution of ADE (second order Lax-Wendroff type) at fixed diffusion and 

different velocity at time 𝑡 = 20𝑚𝑖𝑛. 

The above figure 20 shows the with fixed diffusion rate 𝐷 = 0.01𝑚2/𝑠 and increase of velocity from 𝑣 =

0.02𝑚/𝑠 ,  to  𝑣 = 0.021𝑚/𝑠 , to 𝑣 = 0.022𝑚/𝑠 , to 𝑣 = 0.023𝑚/𝑠 , to 𝑣 = 0.024𝑚/𝑠 , then concentration 

rate is increased along the boundary. 

The following figure 21 represents the change of concentration with respects to fixed velocity and different 

diffusion rate. 

 
Figure 21: Concentration distribution of ADE (second order Lax-Wendroff type) with fixed velocity and 

different diffusion rate at time 𝑡 = 20𝑚𝑖𝑛. 
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In the above figure 21 the velocity is fixed 𝑣 = 0.02𝑚/𝑠 but the diffusion rate is changes from 𝐷 =

0.01𝑚2/𝑠, to 𝐷 = 0.02𝑚2/𝑠 ,to 𝐷 = 0.03𝑚2/𝑠 ,to 𝐷 = 0.04𝑚2/𝑠 ,to 𝐷 = 0.05𝑚2/𝑠. This have seen that 

with increase of diffusion rate with fixed velocity the both transportation and dispersion happened here along 

the boundary the concentration distribution is increased. 

The following figure 22 shows the change of concentration distribution of pollutant at different velocity and 

different rate of diffusion. 

 

Figure 22: Concentration Distribution of ADE (second order Lax-Wendroff type) at different velocity and 

different rate of diffusion at 𝑡 = 20𝑚𝑖𝑛. 

The above figure 22 showS the change of concentration at different diffusion 𝐷 = 0.01𝑚2/𝑠 to 𝐷 =

0.02𝑚2/𝑠 to 𝐷 = 0.03𝑚2/𝑠 to 𝐷 = 0.04𝑚2/𝑠 to 𝐷 = 0.05𝑚2/𝑠 and different velocity 𝑣 = 0.02𝑚/𝑠 to 𝑣 =

0.021𝑚/𝑠 to 𝑣 = 0.022𝑚/𝑠 to 𝑣 = 0.023𝑚/𝑠 to 𝑣 = 0.024𝑚/𝑠. 

As this is known that the stability condition of the scheme by Lax-Wendroff type technique are 0 ≤ 𝛼2 + 2𝛾 ≤

1,   0 ≤ 𝛾 =
𝐷∆𝑡

(∆𝑥)2
< 1 and  0 ≤ 𝛼 =

𝑢∆𝑡

∆𝑥
< 1 . This will be continued until the stability condition are satisfied. 

 

Conclusion 

In this paper, the different numerical schemes of ADE such as FTCSCS and proposed second order Lax-

Wendroff type have been discussed. A second order Lax-Wendroff type scheme for ADE has been proposed 

like as Lax-Wendroff scheme of hyperbolic partial differential equation. Here for proposed new second order 

Lax-Wendroff type scheme of ADE the discretisation of first order terms are in second order same as Lax-

Wendroff scheme of hyperbolic partial differential equation. The stability conditions have been determined 

for FTCSCS and second order Lax-Wendroff type scheme by maximum principle. Here the Advection-

Diffusion equation is exploited to describe the real-life phenomena water pollution in river by using the 

FTCSCS and second order Lax-Wendroff type scheme. Here the numerical solutions have also been showed 

verifying with respect to the velocity, diffusion rate, distance, and time. The graphical exhibition is verifying 

the qualitative behaviour of the solutions of ADE for various considerations of the parameters. The results 

show that the water pollutions are being spreading with the varied the advection and diffusion co-efficient 

term with respect to time and space. The change of pollution concentration at different time with fixed space, 

at different position with fixed time, at different velocity with fixed diffusion coefficient, at different diffusion 

with fixed velocity, with both changing diffusion coefficient and velocity is observed. In the estimation of 

water pollution for FTCSCS and second order Lax-Wendroff type scheme of ADE, this is seen that both 

schemes can be used to describe the water pollution but as second order Lax-Wendroff type schemes is in 

second order discretisation for both time and space and has less error so second order Lax-Wendorff type 

scheme of ADE is the better one to describe the water pollution. So, after this comparison it can be concluded 

that second order Lax-Wendroff type scheme of ADE is better than FTCSCS scheme of ADE for estimation 

of water pollution in river. 
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